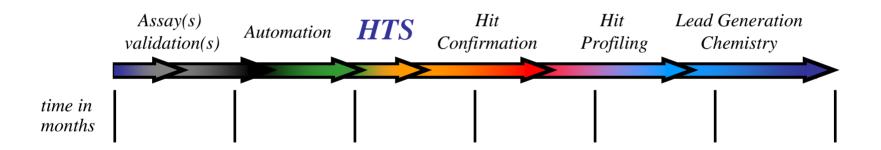
Streamlining Assay Development:

Lessons in Process Optimization Through Protein Optimization

James Kranz
Lead Generation Biology



PHARMACEUTICAL RESEARCH

& DEVELOPMENT, L.L.C.

Rate Limiting Steps in Lead Generation

☐ Industry-wide, HTS (pushing plates) is a small part of the total process in Lead Generation.

✓ Can we streamline the upstream components; assay development, validation, & automation?

Multidimensional Biological Approach

- Different assay classes provide complimentary information.
- □ In Common are general questions related to assay development/optimization.

Biophysical assays

structural (X-ray, NMR) binding thermodynamic in silico (predictive) methods spectroscopic (CD, Fluor., scattering)

Cellular & in vivo, assays

second messenger effects upregulation/downregulation gene activation/repression ADME/Toxicity

Molecular "activity" assays

inhibition (IC50) competitive binding ELISAs signal transduction pathways enzyme mechanisms

Problems of Protein Stability Susceptibility of Proteins to Degradation

Chemical, Covalent Degradation:

- Deamination
- Oxidation
- Disulfide bond shuffling

★Physical Degradation:

- Protein Unfolding
- Loss through adsorption to Surfaces
- Nonnative Aggregation

Protein Stability by ThermoFluor® Factors Influencing Protein Stability

Temperature:

- Parabolic dependence on ∆G (cold and heat denaturation).
- High Temperature can result in irreversible unfolding.

Preservatives (formulation):

- Added to ensure sample sterility.
- Can induce aggregation in the absence of additional stabilizers.

Surfactants:

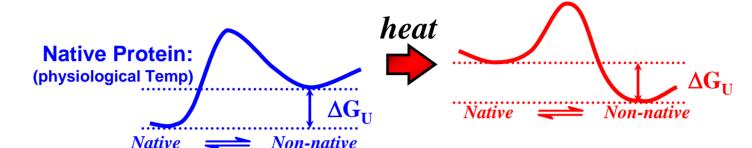
- Added to prevent aggregation and adsorption to surfaces.
- Can destabilize native protein, while kinetically inhibiting aggregation.

★ Salt Type and Concentration:

- Complex effects on protein stability, solubility, and aggregation rates.
- Net effect on protein stability is a balance of multiple mechanisms.

★ Solution pH:

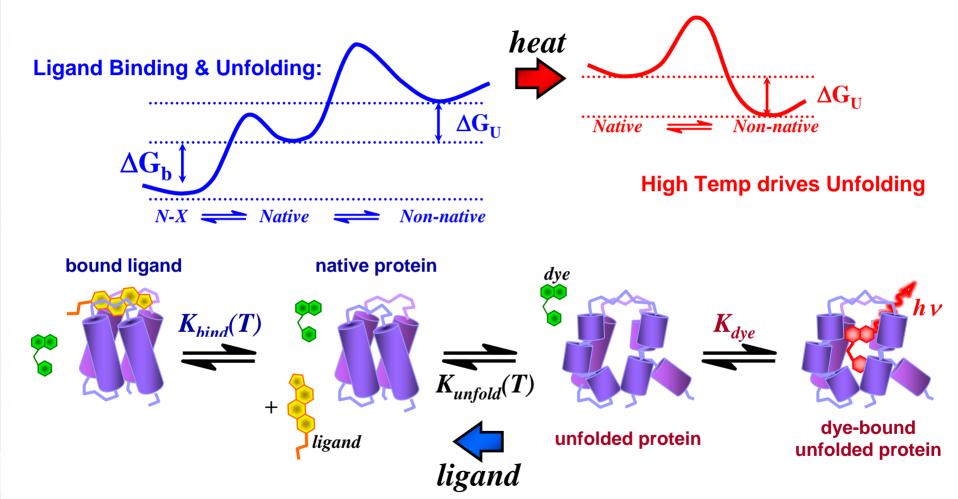
- Determines total charge on a protein.
- Strong influence of pH on protein aggregation rates.


★Ligands & Cosolutes:

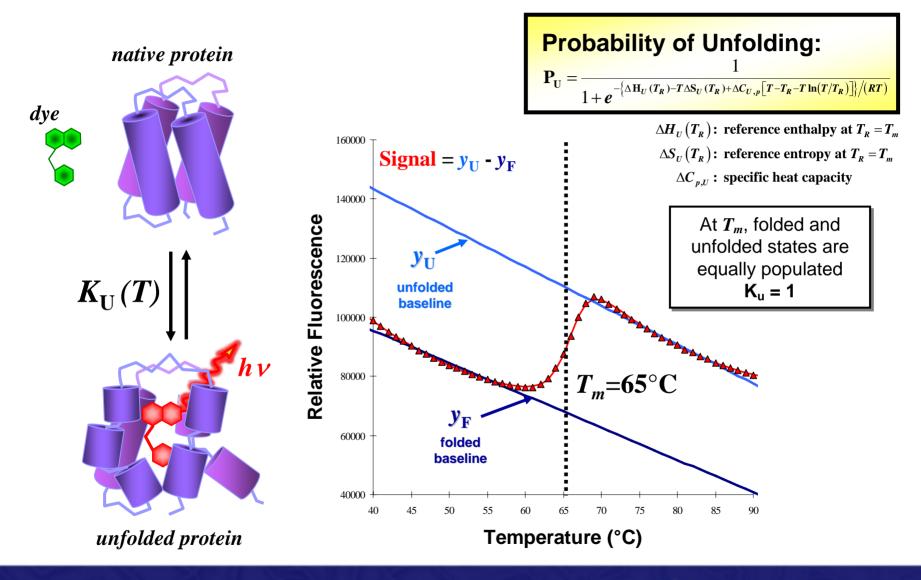
- Compound binding generally will stabilize native protein.
- Preferential hydration by cosolutes can prevent unfolding.

Protein Stability by ThermoFluor®

Dye-based fluorescence assay of stability



High Temperature drives Unfolding



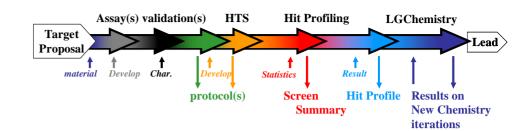
Ligand effect on Thermal Stability

Equilibrium shifts to folded, ligand-bound form

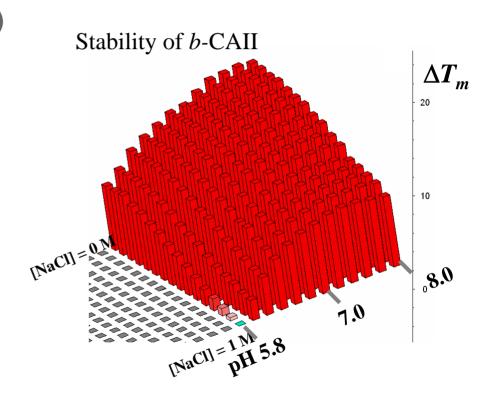
Detailed Fluorescent Melt Parameters

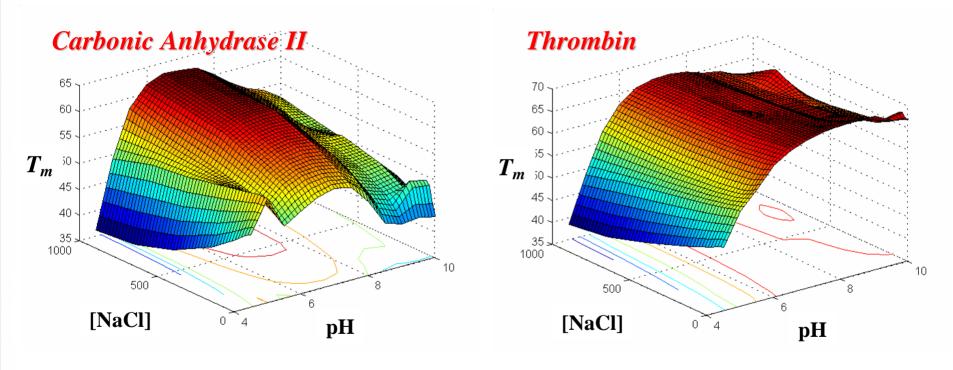
ThermoFluor®: High Throughput Thermodynamic Assay

Plate-based Protein Unfolding


- 384-well assay plate; high throughput characterization and screening of proteins.
- Low volume, 3 μl, small-scale reactions,
 ~1 μM protein; typically < 200 ng well.
- Each well comprises an individual protein unfolding assay.
- Compound binding free energy adds to protein stability – shifts stability curve to higher temperature.

Optimization for HTS is an optimization of protein stability and signal intensity.


M. W. Pantoliano et al. (2001) J. Biomol. Screen. 6: 429
M. J. Todd & F. R. Salemme (2003) Gen. Eng. News 23
D. Matulis et al. (2005) Biochemistry 44: 5258


ThermoFluor® in Drug Discovery

- □ Protein Stability Profiling (PSP)
 - Protein preparation (pH/Salt, excipient effects)
 - Protein crystallography
 - Protein Formulation
- □ µHTS
- Hit profiling
 - Calculating binding constants
 - Triage of "bad" compounds
 - Secondary hit profiling
 - Inhibition Mechanisms
 - Competition

Stability Surfaces of Test Proteins Variation of T_m with pH and NaCl

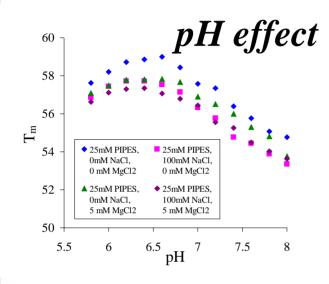
- ☐ Unique stability surface for each protein.
- ☐ Profile is a "fingerprint" for a protein sequence, prep, or formulation.

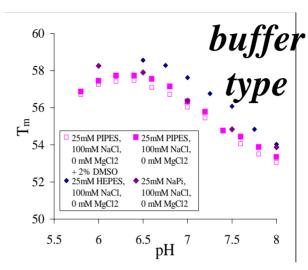
Array-Based Condition Profiling

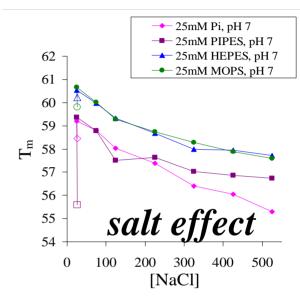
pH/Salt Characterization:

- 384-well plate based survey of variable pH & salt conditions.
- Varied in conjunction with arrays of buffer type, ±MgCl₂.

"Excipient" Characterization:

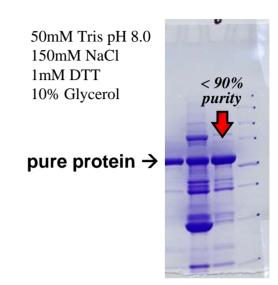

- Plate-based survey of secondary buffer components:
 - Comparisons of NaCl, KCl, LiCl, NH₄Cl, etc.
 - MgCl₂ vs. MnCl₂ or CaCl₂; different anions (Cl⁻, SO₄⁻², PO₄⁻³)
 - Cosolutes (amines), polyols (glycerol), surfactants (tween20)
 - Essential elements; NiCl₂, ZnCl₂, etc.

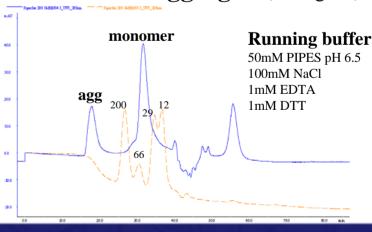

Ligand Binding & Positive Controls:


- Direct measurement of ligand binding affinity (dosed compounds).
- Comparison of binding under different conditions (e.g. ±MgCl₂).
- √ Captures Protein-specific Effects in Common Set of SOPs

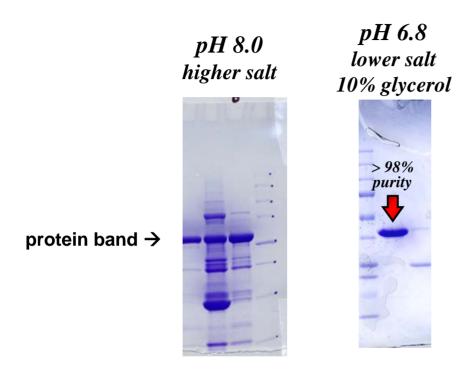
Protein Stability Profiling:

Kinase #1 – pH, Salt, & Buffer effects on stability

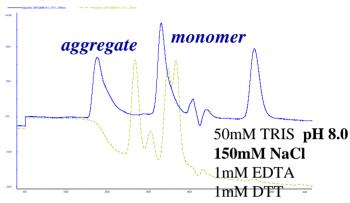


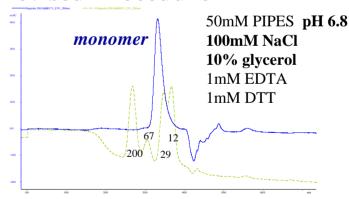

- □Maximum stability observed ~ pH 6.5
 - Screen optimization
 - protein preparation implications
- □Mg²⁺ only affects stability at low ionic strength
- □Buffer effects: protein more stable in HEPES than Pi, PIPES
- □ Protein stability decreased with high [salt]

Kinase#1: Protein Purification challenges


- Expression/Purification
 - Expressed as GST-fusion protein
 - Purified off GSH-resin, thrombin cleavage
 - Described procedure suggests handling at pH 8.0
 - < 90% pure
 - Significant quantities of aggregates present
- PSP suggests
 - use lower pH
 - use HEPES
 - low ionic strength

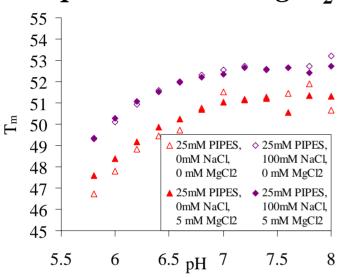
30% soluble aggregate(1.2mg/ml)

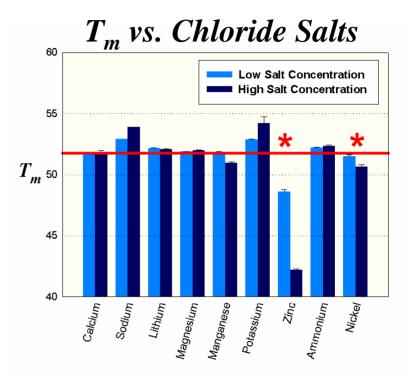

Kinase#1: Protein Purification solutions


☐ Using conditions from PSP

- altered thrombin cleavage kinetics
- significantly improved protein purity
- prevented aggregate formation

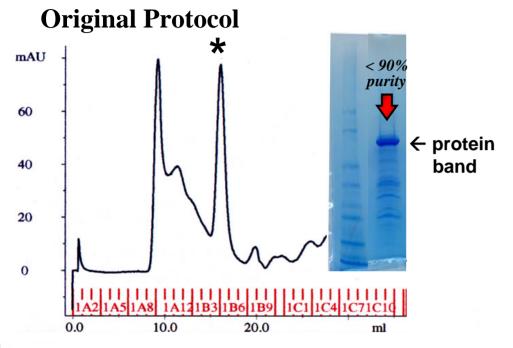
Original (Published) Protocol

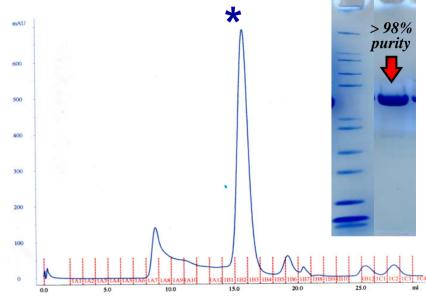

Revised Procedure



Protein Stability Profiling:

Kinase #2 - pH, Salt, & Buffer effects on stability


 $pH \pm NaCl \& MgCl_2$


- ☐ High Salt stabilizes the kinase domain (also Phosphate Buffer).
- ☐ Protein is destabilized by Zinc and by Nickel (also imidazole).
- □ Combination of NiCl2 & HEPES Buffer used initially in prep.

Kinase #2: Protein Purification Challenges

Gel filtration analysis of protein eluted from Nickel-NTA column in HEPES buffer.

Revised Procedure

Gel filtration analysis of protein eluted from Talon column in phosphate buffer.

☐ Change of column type minimized exposure of protein to Nickel.

^{*} peak corresponding to gel fraction.

^{*} peak corresponding to gel fraction.

Kinase Protein Stability Profiling

Kinase #1

☐ Original conditions:

- Tris Buffer, typical salt & reductant, GST-column purification
- Aggregation was biggest challenge

□ Protein Stability Profile:

- pH profile maximum at pH ~ 6.5
- Salt profile prefers low salt, polyols
- Buffer profile HEPES preferable to Phosphate, PIPES, MOPS
- Metals divalents are destabilizing

□ PSP-Altered Purification:

- Changed to HEPES Buffer
- Added 10% Glycerol to thrombin cleavage & column elution buffer
- Minimized Aggregation

Kinase #2

☐ Original conditions:

- HEPES Buffer, typical salt, Nickelcolumn purification
- Aggregation was biggest challenge

☐ Protein Stability Profile:

- pH profile maximum at pH > 7
- Salt profile stabilized by high salt
- Buffer profile Phosphate buffers uniquely stabilizing
- Metals Nickel is destabilizing

□ PSP-Altered Purification:

- Changed to Phosphate Buffer
- Substituted Talon Column for Ni-NTA column
- Minimized Aggregation

Enzyme Assay Development Target Characterization at a Basic Level

Well-studied System

- Establish correct form of enzyme/substrates.
- Signal Optimization.
- Effects of buffer (pH, salt, etc) and temperature on activity.
- Measure Km's, Kd's, EC50's for all substrates & cofactors.
- Measure true Vmax; kcat where feasible.
- Measure Ki's/IC50's for known inhibitors.

Poorly-characterized System (additional work)

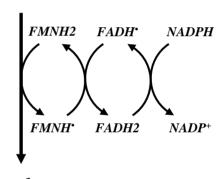
- Investigate a minimum set of potential biological substrates.
- Test all known assays.
- Screen additives/ligands to investigate affects on activity.
- Detailed kinetic characterization (establish kinetic mechanism).
- Mechanistic studies for inhibitors and tool compounds (determine true Ki).

Enzyme Assay Development: Streamlined Characterization Approach

Signal Optimization

- 1) Wavelength(s)
- 2) Rate/Enz. Conc.

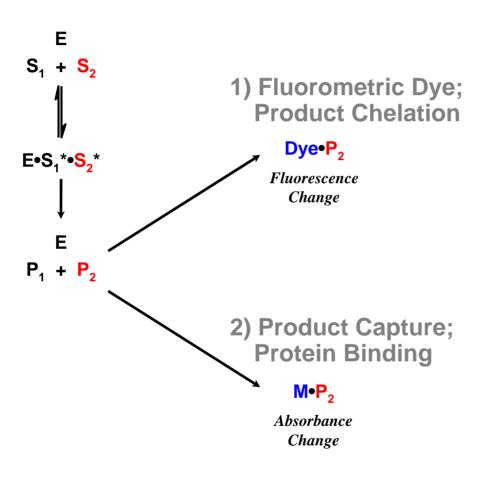
Condition Profiling


- 1) pH & Salt
- 2) excipients

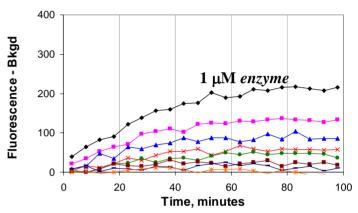
Optimization for Automation

Challenging System:

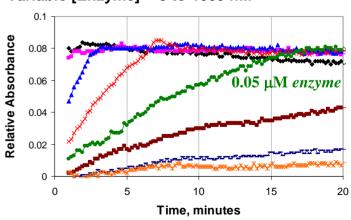
Substrates



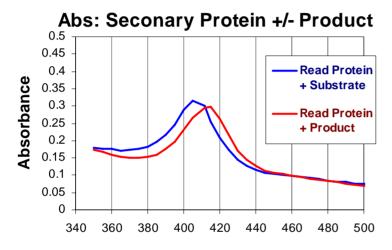
Products

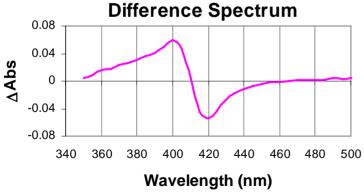

- Reductase/Oxidase Activities; multi-step enzyme mechanism.
- One of the Products is Transiently
 Stable opportunity for capture.

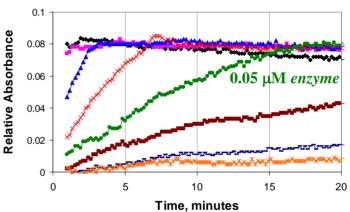
Enzyme Assay Development:


Rate-based Product Detection Assays

Dye Chelation Assay: Variable [Enzyme] - 5 to 1000 nM




Secondary Binding Assay: Variable [Enzyme] - 5 to 1000 nM

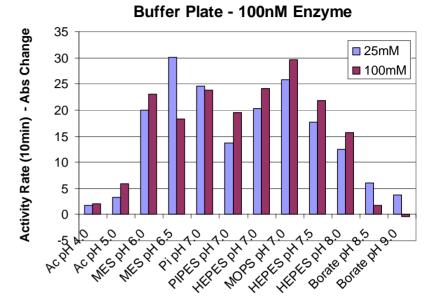

Signal Optimization Dual Wavelength Absorbance

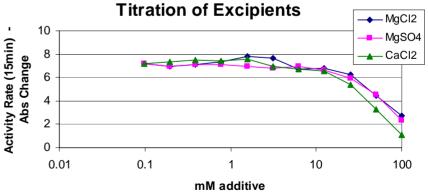
Dual Wavelength Absorbance Assay

Secondary Binding Assay: Variable [Enzyme] - 5 to 1000 nM

- □ Wavelength-difference (400 420nm):
 - Double Signal of single wavelength.
 - Additional Signal Stability.

Conditional Effects on Rx Rates


Array-based Approach:


Survey of pH & Salt:

- The activity rates (after 10min) in the are similar from pH 6.0-7.5.
- Initial rates are similar between 100-400 mM NaCl

Excipient effects on Rates:

- Increased Activity Rates: CaCl₂, MgCl₂, Tween 20
- Significantly Decreased Rates: NiSO4, PEG, Imidazole
- Tween20 optimal at 0.01%; DMSO tolerated up to 2%
- Buffer modified to HEPES, pH7; CaCl₂, MgSO₄, Tween, GSH added to minimize [Enzyme].

Initial Automation Uniformity Tests

Zprime vs [Enzyme] – 10 min. endpoint read (384):

[Enzyme]	Signal Mean	Signal Std	BG Mean	BG Std	Signal:BG	Zprime
60nM	12.59	0.51	0.43	0.13	30	0.90
40nM	9.21	0.44	0.36	0.15	25	0.90
30nM	6.39	0.45	0.39	0.20	16	0.88
*20nM	4.38	0.27	0.26	0.12	17	0.89
10nM	2.26	0.25	0.22	0.15	10	0.84
5nM	1.35	0.35	0.17	0.11	8	0.38

^{*}Screening Concentration - going forward in 1536 for uHTS

- \square Uniform Z' > 20 nM enzyme, with slight decrease at 10 nM (first pass).
- ☐ Signal becomes limiting at the lowest enzyme concentration.
- ☐ Stability of endpoint read is high in longevity tests

(Z' > 0.8 after 2 hours on ice and > 0.65 after 4 hours at room temperature)

✓ Once conditions optimized from Standardized Profiling, no additional optimization needed for screening.

Summary

Protein Stability and Functional Profiling

- ☐ General, homogeneous assays are powerful tools to assay protein stability and function.
 - Easy to tune conditions to a single protein vs. a survey of protein constructs (truncations/mutations).
 - Routine improvement in yields, purity, and minimized aggregation in recombinant protein preps.
- ☐ Similar, broad assay characterization can be readily applied to functional/enzyme assays.
 - Systemized set of questions/processes related to source of signal, variations in activity, and system variables.
 - "Growing pains" associated with transfer to robotics are minimized when protein mechanism is well characterized.

Acknowledgements

J&J PRD, LLC, Springhouse, PA

Roger Bone, Sr. VP Research & Early Development Barry Springer, VP Enabling Technologies Matthew Todd, Team Leader - L.G.Biology

Eric Asel

Alexander Barnakov

Luda Barnakova

Brian Bordeau

Theodore Carver

Winnie Chan

Rose Dandridge

Ingrid Deckman

Heather Devine

Jennifer Kirkpatrick

Alexandra Klinger

Diane Maguire

Tara Mezzasalma

Marina Nelen

Ioanna Petrounia

Kanan Ramachandren

Celine Schalk-Hihi

Ruth Steele

Wendy Sun

Geoffrey Struble